
No Debug For H

Lab H

Background

File I/O allows us to read and write large amounts of data onto permanent storage. Unlike variables that we

declare in memory, �les are stored on the local machine in permanent storage, such as a hard drive or solid

state drive.

File I/O is very much like console input. The only di�erence is that you're reading from a �le rather than a

person (the console). The >> and << operators are exactly like they are with the console. This is why I teach �le

I/O as if you're reading with �n and writing with fout...because if you know how to use cout and cin, you

know how to use most of fout and �n.

The program below will use 3 �les - two input �les and one output �le.

Problem

The purpose of this program is to multiply a matrix (a 2 dimensional array) by a vector (a one dimensional

array). Each of the arrays will be implemented in the program using a class. You will be reading two separate

�les: one containing a vector and the other containing a matrix. You will then multiply the vector and matrix

together and write the resulting vector to a �le (mathematical process given below).

The vector: This array is a single dimension containing 4 elements. For this program you will have two vectors

- one will be the vector created from input, the other vector will hold the result from the multiplication. The

input vector will contain four (4) values (signifying x, y, z, and w).

The matrix: This array can be thought of as an NxM matrix where N is the height and M is the width (N rows, M

columns). For this program the matrix will contain 4 rows (N) and 4 columns (M).

If you're wondering, this should look familiar if you've ever done anything with computer graphics, where the

vector describes a vertex, and the matrix is some transformation to the vector...but that's way beyond the

scope of this course.

The matrix and vector will be implemented as classes as follows:

Vector class

Use the following class prototype to store your vector.

class Vector

{

 double v[VECTOR_SIZE];

public:

 void Set(int index, double value);

 double Get(int index) const;

};

VECTOR_SIZE will be four (4) for (0: x, 1: y, 2: z, and 3: w)

Set will set the index of the array to the given value

Get will return the value of the array at the given index

Matrix class

Use the following class prototype to store your matrix.

class Matrix

{

 double m[MATRIX_ROWS][MATRIX_COLS];

public:

 void Set(int row, int col, double value);

 double Get(int row, int col) const;

};

MATRIX_ROWS and MATRIX_COLS will both be four (4)

Set will set the row, col of the matrix to the given value

Get will get the value of the matrix at the given row and column

Inputs

You will be using �les to �ll the Vector and the Matrix.

The �rst �le you will be reading is the "vector" �le which contains four (4) values x, y, z, and w. The size of the

array will be four (4). You must use the Vector class to store the vector �le's information.

The second �le you will be reading is the "matrix" �le which contains sixteen (16) values which correspond with

a four by four matrix. The �le will be read in using "row-major" format. That means that the �rst four values

correspond with the four values in the �rst row, the next four correspond with the next four in the second row,

and so forth. In other words, you read each row and not each column �rst. You must use the Matrix class to

store the matrix �le's information.

All input prompts and error messages will be displayed to the console. The result vector (after matrix

transformation) will be written to an output �le.

First, ask the user to supply the vector �le, matrix �le, and the �le to store the result using the following

prompts:

Enter vector filename:

Enter matrix filename:

Enter result filename:

NOTE: There is a space after the colon in the input prompts

You will get all three �lenames from the user prior to opening any �le.

After inputting the �le names, print a blank, empty line before error checking the �les.

If the vector �le cannot be opened for any reason, output the following error message and return back to the

operating system:

Unable to open vector file.

If the matrix �le cannot be opened for any reason, output the following error message and return back to the

operating system:

Unable to open matrix file.

As you read the vector �le, if the �le doesn't contain enough values, output the following error message and

return back to the operating system:

Unable to read vector file.

As you read the matrix �le, if the �le doesn't contain enough values, output the following error message and

return back to the operating system:

Unable to read matrix file.

You will assume that the output �le opened successfully. As such, there will be no error message.

Process

Now that you have data input from �les you're ready to process the data.

You will be transforming the vector by the transformation matrix using the following formula:

 m11 m12 m13 m14 x

 m21 m22 m23 m24 X y

 m31 m32 m33 m34 z

 m41 m42 m43 m44 w

The resulting vector will contain four values:

x' = m11*x + m12*y + m13*z + m14*w

y' = m21*x + m22*y + m23*z + m24*w

z' = m31*x + m32*y + m33*z + m34*w

w' = m41*x + m42*y + m43*z + m44*w

Create a non-member function called Multiply using the following prototype (you MUST use the return type

and parameter list given here!). This function will perform the multiplication given above and return a brand

new Vector with the result.

Vector Multiply(const Matrix &m, const Vector &v);

Outputs

You will output the result of multiplication to the output �le speci�ed by the user.

Output x', y', z', and w' precise to one decimal point in �xed notation. Also, they will be in a left-justi�ed �eld

of six (6) characters. For example if x' is 1.721, y' is 2.123, z' is 2.991, and w' is 3.412, then your output would be

(remember to put a blank space between �elds):

1.7 2.1 3.0 3.4

Additional Requirements

1. You must use the given prototypes for the Vector and Matrix classes

2. You muse use the given prototype for the Multiply function

3. You must use input �le streams for all �le I/O

4. You must use two nested for loops (one for row, one for col) to extract the values from the matrix �le and

store into the Matrix class

5. You must use the constants VECTOR_SIZE, MATRIX_ROWS, and MATRIX_COLS when declaring your arrays

and in your for loops when reading your �les

6. The textbook describes using exit(), however you may not use this. Instead, use return. Your TA or professor

may tell you why.

C++ Topics Covered

Arrays

Multidimensional arrays

Input �le streams

Classes

Setter/getter notation

Passing objects to functions

Returning objects from functions

Textbook Chapters Covered

Chapter 6.1 (Files)

Chapter 7.4 (Multidimensional arrays)

Chapter 11.3 (Arrays as member variables)

Relevant Reading

Log inBuilt with concrete5 CMS.

https://profmarz.com/index.php/cs102/slides
https://profmarz.com/index.php/login
http://www.concrete5.org/

