
COSC 302/307: Mazesolve - Recursive and Iterative Tips

Clara Nguyễn

November 6, 2019

1 First off...

Consider this a continuation of that sketch’d up document about Mazemake. This time, though, instead
of me writing on literal glass, I’m using LATEX. Cool, huh? As an actual note, all coordinate notation in
this document is assumed to be in (x, y) unless otherwise specified.

2 Reading in the Maze

So Mazesolve has a few ways to be implemented. In this assignment, you are doing DFS (Depth-first
search), which can be implemented with recursion or iteration if you know what you’re doing. You have
solution executables to compare your answers to (namely smazesolve). The executable will take the
following parameters:

UNIX> ./smazesolve maze.txt path.txt

This application will generate path.txt using data from maze.txt.

2.1 Format of maze.txt

Before we even try to solve a maze, we need to read it in properly. Let’s recap on the format of a valid
maze.txt file. It follows this format:

1 MAZE Nrows Ncols
2 c1_row c1_col c2_row c2_col
3 c1_row c1_col c2_row c2_col
4 ...
5 c1_row c1_col c2_row c2_col

If you are comfortable with (x, y) notation, it is as follows:

1 MAZE Nrows Ncols
2 y1 x1 y2 x2
3 y1 x1 y2 x2
4 ...
5 y1 x1 y2 x2

1

Example: Assume we have already run smazemake to generate the following valid maze.txt of size
2× 2:

1 MAZE 2 2
2 0 0 1 0

The choice to do a 2 × 2 maze is due to it being guaranteed to only have a single wall. This maze has a
horizontal wall between the two cells in the first column. Assume this generated maze is M , and assume
it visually looks like this:

Figure 1: M from maze.txt

We will cover the format of path.txt when the algorithms are covered.

2.2 Reading in maze.txt

You can’t do anything with data if you don’t read it into your program. Recall that the first line of
maze.txt is the following:

1 MAZE 2 2

This has the MAZE header, as well as row and column (height and width) specifications for the entire maze.
Since you’re restricted to doing C-style input, we can read this in with fscanf:

1 FILE *fp = fopen("maze.txt", "r");
2 fscanf(fp, "MAZE %d %d", &Nrow, &Ncol);

Simple enough. Now let’s initialise our maze M . Assume M is a three-dimensional array of bools of size
M [Ncol][Nrow][4] (Writeup says row should be first, but I flip mine. Deal with it). Set all values in M [][][]
to false, meaning no walls exist.

You may have noticed that the furthest inward array is a fixed size... 4. This is for whether the cell
at M [X][Y] has a wall in a specific direction. You may define these directions in any way you wish. For
reference, I define mine as the following enum:

1 typedef enum direction {
2 DIR_LEFT, /* 0 */
3 DIR_UP, /* 1 */
4 DIR_RIGHT, /* 2 */
5 DIR_DOWN /* 3 */
6 } DIR_T;

2

Using this enum as reference, we can say DIR_LEFT is 0, DIR_UP is 1, and so on. You may set yours in
whatever way you wish. It won’t matter because, assuming your maze has no cycles and is all in one set,
only one solution exists, and DFS will eventually find it.

Anyways, so we read in the header and have M [Ncol][Nrow][4] set up with everything set to false. This is
what M looks like: Let’s start setting some to true. Before we read in lines, set all boundary walls to true.
M should look like this:

(a) M with all walls false (b) M with boundary walls true

Now we can read in data. Use fscanf to read in each line into (y1, x1, y2, x2) (Just read in "%d %d %d
%d" until fscanf doesn’t return 4). Then use that to set the walls... but then we run into another problem.
How do we know which walls to break down? If you’re given 2 points, you need to know the direction of
one point facing another to know to put a wall between them.

Let’s make up a function that takes 2 points and returns the direction from the first point to the sec-
ond. We’ll name it get_dir. This function is incredibly simple assuming the following 2 properties hold:

• With any 2 given points (x1, y1) and (x2, y2), either x1 = x2 or y1 = y2. The points will always be
aligned on one of the 2 axes.

• There is never a case where both x1 = x2 and y1 = y2. It isn’t a pair of different points otherwise.

With these properties, we can write "DIR_T get_dir(x1, y2, x2, y2)" like so:

• If x1 = x2... it must be either up or down

– If y1 < y2... return DIR_DOWN.

– If y1 > y2... return DIR_UP.

• If y1 = y2... it must be either left or right

– If x1 < x2... return DIR_RIGHT.

– If x1 > x2... return DIR_LEFT.

There are some examples on the next page to visualise this.

3

Example 1: Assume (x1, y1) = (2, 2) and (x2, y2) = (4, 2). The direction is DIR_RIGHT because...

Figure 3: Plot of (2, 2) pointing to (4, 2).

Example 2: Assume (x1, y1) = (3, 1) and (x2, y2) = (3, 3). The direction is DIR_DOWN because...

Figure 4: Plot of (3, 1) pointing to (3, 3).

Understand now? Okay, great. Now we can use this function to help us construct the walls. Remember,
because of symmetry, we have to construct the opposite wall on the second cell of each pair as well. We
can get the opposite direction by simply flipping the arguments of get_dir. Finally, behold the following
(very short and elegant) pseudocode:

While fscanf(...) returns 4
M[x1][y1][get_dir(x1, y1, x2, y2)] = true
M[x2][y2][get_dir(x2, y2, x1, y1)] = true

4

Let’s go back to M . The second line is "0 0 1 0". So (x1, y1) = (0, 0) and (x2, y2) = (0, 1). Let’s run the
pseudocode from above on this input:

M[0][0][get_dir(0, 0, 0, 1)] = true
M[0][1][get_dir(0, 1, 0, 0)] = true

That resolves to this...

M[0][0][DIR_DOWN] = true
M[0][1][DIR_UP] = true

And this will perform the following change...

(a) M before the pseudocode above. (b) M after the pseudocode above.

Repeat this procedure for every 4 numbers read in and your maze will be constructed. Congrats, you’re
done reading in maze.txt. Now let’s get to computing a valid path from one point to another...

3 Theoretical maze traversal via Depth-first search

Before we discuss a programmatical approach to solving this problem, it’s good to understand how to
theoretically apply DFS to a graph, as this algorithm has variations that apply to all sorts of problems
in Computer Science. Don’t like theory? Skip to Section 4 (pg. 8). Anyways, because the maze, M , is
generated by Randomised Kruskal’s Algorithm, it has the following properties:

• There exists exactly one unique path from any source S to any sink T .

• There are no cycles (a consequence of the first point).

Because of these properties, we can interpret M as a graph or tree where the source S is the root node
and T exists somewhere in the graph that is approachable from S. If we interpret it as a graph, we can
then use Depth-first search to traverse the graph until we hit T . Once we do, we have the only valid path
from S to T !

General Algorithm: Given a maze M , a source S, and a sink T ... Keep a stack P (for "path") of
coordinates while we are traversing the graph. Assume Pn is the nth coordinate in the stack P where n
is the number of elements in the stack and Pn−1 is the top element (current point). Start with pushing S
into P (thus n = 1). Then,

5

1. At Pn−1, try enumerate all possible valid directions. A valid direction in the maze would be one where
there’s no wall blocking the way, and the destination cell hasn’t already been visited. You may start
from any direction since we know there only exists one unique solution.

2. If a valid direction is found, push the coordinate we would be at if we took that direction to P (e.g. if
Pn−1 = (0, 0) and we went down, push (0, 1) to P). Also mark that cell as visited. Check if Pn−1 = T .
If this is the case, we have reached our destination and P contains the points in a path from S to T .

3. Once all directions have been checked at Pn−1, unless T ∈ P , we need to pop the top element off and
go to the previous cell. When popping from P , you must also mark that cell as unvisited. Repeat this
as many times as this condition holds. If n = 0, there is no possible solution from S to T that exists
in M .

Example 1: Assume the following maze M is as shown:

Figure 6: M from maze.txt

Given that the source S = (0, 0) and the sink T = (1, 1), find a path P from S to T using DFS.

Solution:

1. Start at S and push it to P . Thus, n = 1 and Pn−1 = S = (0, 0). This is our starting point for the
algorithm listed above. Set (0, 0) to visited.

2. Look through all possible valid directions in Pn−1. The only valid direction to go is to the right,
which is (1, 0). Push that to P . Thus, n = 2 and Pn−1 = (1, 0). Set (1, 0) to visited.

3. Since we pushed a new coordinate to P , Pn−1 = (1, 0). Look at all possible valid directions we can
go to from here. There is no wall between (0, 0) and (1, 0). However, (0, 0) has been visited, so we
can’t go to it or else we will get into a cycle. The only valid path is to go down to (1, 1). Push that
to P . Thus, n = 3 and Pn−1 = (1, 1). Set (1, 1) to visited.

4. Pn−1 = T , thus a path from S to T has been found.

The result is that P has the following elements: (0, 0)→ (1, 0)→ (1, 1). This is our path from S to T . The
path (coloured in grey) applied to the maze is as shown:

6

Example 2: Assume the following maze M is as shown:

Figure 7: M from maze_backtrack.txt

Given that the source S = (0, 0) and the sink T = (1, 1), find a path P from S to T using DFS. Assume
the order of directions to try is DIR_LEFT, DIR_UP, DIR_RIGHT, DIR_DOWN.

Notice something different? A specific order of directions was given so let’s follow that. From S, we can’t
go to the left or up. But, we can go to the right and be at (1, 0). However, we can’t go anywhere from there
since there’s a wall down below and (0, 0) has been visited. So we have to pop off of P , go back to (0, 0)
and try the next direction (DIR_DOWN) to reach our solution. Let’s try it.

Solution:

1. Start at S and push it to P . Thus, n = 1 and Pn−1 = S = (0, 0). Set (0, 0) to visited.

2. Look through all possible valid directions in Pn−1. We were given an order of directions to follow so
we try left and up. They have walls. Right is a valid direction so go there. Push (1, 0) to P . Thus,
n = 2 and Pn−1 = (1, 0). Set (1, 0) to visited.

3. Look through all possible valid directions in Pn−1. There is no wall to the left of (1, 0), but (0, 0) has
been visited. Therefore, it’s an invalid direction. Going up, right, and down is impossible since there
are walls. All directions have been checked at Pn−1 and T /∈ P . Pop (1, 0) off of P and go back to
the previous cell in the stack. Thus, n = 1 and Pn−1 = (0, 0). Set (1, 0) to unvisited.

4. Back at (0, 0), the last direction we tried was right. We know that direction led to a bad result, so
try the next direction, being down at (0, 1). This is a valid direction, so push it to P . Thus, n = 2
and Pn−1 = (0, 1). Set (0, 1) to visited.

5. Now we’re at (0, 1). Look at all possible valid directions we can go to from here. Left has a wall. Up
has no wall, but (0, 0) is visited so it’s invalid. Right has no wall and (1, 1) is unvisited. Push that to
P . Thus, n = 3 and Pn−1 = (1, 1). Set (1, 1) to visited.

6. Pn−1 = T , thus a path from S to T has been found.

The result is that P has the following elements: (0, 0)→ (0, 1)→ (1, 1). This is our path from S to T . The
path applied to the maze is as shown:

7

4 A recursive approach to finding a path

This kind of problem has a very short and elegant recursive solution, even without the use of C++ data
structures.

Setup: Do the following:

1. Make a cell struct that stores an x and y coordinate. Both of them can be integers.

2. Assume the source S is at (0, 0) and the sink T is at (Ncols − 1, Nrows − 1). For instance, considering
maze M above, S = (0, 0) and T = (1, 1).

3. Make an array to mimic a stack-like data structure. Let’s name it "stack". To do this, either malloc
or new an array of cell sized Nrows × Ncols (the max possible size of a valid maze path). Then,
make an integer to keep track of the current position you’re at in the stack. Call that "stack_size".
If you push an element, this "position" is incremented by 1. If you pop an element, it’s decremented.

4. Make a 2D array of integers to keep track of whether a cell has been visited or not. We’ll name
it V [Ncols][Nrows] for "visited" (lab writeup uses iswhite). By default, make sure all elements are
set to 0. If V [0][0] = 0, then the cell at (0, 0) hasn’t been visited. If it’s 1, the cell has been visited.

Now that we’re set up, let’s make a recursive function, named solve, to find a path between S and T . We
need this function to push a cell to the stack. Then, for every possible direction, call itself again if there’s
no wall and the target cell hasn’t already been visited. The function returns a bool. If the recursive call
returns true, then return true as a solution has been found. Otherwise... after all directions have been
attempted, assume failure, pop off the stack, and return false. Behold the following pseudocode:

1 bool solve(...) {
2 cell point, to // Stores current position and cell to go to in the next step
3
4 set V[point.x][point.y] to "true". //We are at this cell, so we have "visited" it.
5 push (point.x, point.y) to stack and increment stack_size by 1
6
7 if point.x = T.x and point.y = T.y
8 return true //we hit the sink
9

10 for all possible directions (DIR_LEFT, DIR_UP, DIR_RIGHT, DIR_DOWN) as "d" {
11 if there is a wall at M[point.x][point.y][d]
12 continue
13
14 compute to.x and to.y. Use the direction to determine this
15 //(e.g. if d = DIR_RIGHT, to.x = point.x + 1; to.y = point.y)
16
17 if (to.x, to.y) has been visited already
18 continue
19
20 if (solve(...) returns true)
21 return true, because we have found a solution.
22 }
23
24 set V[point.x][point.y] to "false"
25 pop the stack and decrement stack_size by 1 //assume failure and go back
26
27 return false
28 }

8

You should pass in the following:

• Your three-dimensional array that holds the walls (M).

• Your two-dimensional array that holds whether the cells have been visited or not (V).

• Your one-dimensional array "stack" (stack), as well as an integer of the size of the stack (stack_size).

• The current point as a cell struct (one argument) or as x, y (two arguments). When making the
initial call to solve, this should be S (the source point).

• The sink point (T) as a cell struct (one argument) or as x, y (two arguments).

When this function completes (and returns true), stack (from 0 to stack_size) will hold the pairs of
coordinates from the source S to the sink T . You can just loop through it and print the coordinates (in
row, column order). If this function ever returns false, a solution doesn’t exist.

5 An iterative approach to finding a path

This problem also has an iterative variation that can be done in main() with little variance from its recursive
counterpart. You need the same data from the recursive variation, with the addition of a direction stack-like
array variable (see #4 below) to keep track of your direction, since we lose the benefits of backtracking.

Setup: Do the following:

1. Make a cell struct that stores an x and y coordinate. Both of them can be integers. I don’t care if
signed or unsigned.

2. Assume the source S is at (0, 0) and the sink T is at (Ncols − 1, Nrows − 1). For instance, considering
maze M above, S = (0, 0) and T = (1, 1).

3. Make an array to mimic a stack-like data structure. Let’s name it "stack". To do this, either malloc
or new an array of cell sized Nrows × Ncols (the max possible size of a valid maze path). Then,
make an integer to keep track of the current position you’re at in the stack. Call that "stack_size".
If you push an element, this "position" is incremented by 1. If you pop an element, it’s decremented.

4. Make another array to mimic a stack-like data structure. Let’s name it D[Ncols × Nrows]. This time,
store an integer (or a DIR_T if you did an enum like me) in it rather than a cell. This stack is for
the current direction of a particular point in the path. You do not need to have a "size" integer for
this one, since we can use the one in the previous stack-like data structure here (they both grow and
shrink at the same time).

5. Make a 2D array of integers to keep track of whether a cell has been visited or not. We’ll name
it V [Ncols][Nrows] for "visited" (lab writeup uses iswhite). By default, make sure all elements are
set to 0. If V [0][0] = 0, then the cell at (0, 0) hasn’t been visited. If it’s 1, the cell has been visited.

With recursion, we had each function call keep track of the current direction so we wouldn’t have to push
it to any kind of stack. Now that we are able to keep track of a point’s current attempted direction via our
own stack variable, we can act without recursion (essentially mimicking it). It’s a bit more work compared
to recursion, but it can be done:

9

1 main() {
2 /* read in data and set up walls */
3
4 /* begin DFS */
5 cell point, to;
6 stack[0]’s x and y = S //First iteration’s point starts at Source
7 D[0] = DIR_LEFT //First iteration’s direction starts at left
8 V[S.x][S.y] = true //Source has been visited
9 stack_size = 1 //Stack has Source, that’s 1 element

10
11 while (stack_size > 0) {
12 while D[stack_size - 1] == 4 (1 past directions 0, 1, 2, 3)
13 set visited for point at top of the stack to "false"
14 decrement stack_size by 1
15
16 if (stack_size == 0)
17 break //no solution is possible
18
19 point = stack[stack_size - 1] //Get the current point
20
21 if point.x = T.x and point.y = T.y
22 break; //we hit the sink
23
24 compute to.x and to.y for the direction in D[stack_size - 1]
25 increment D[stack_size - 1] by 1
26
27 if M[point.x][point.y][D[stack_size - 1] - 1]
28 continue
29
30 if V(to.x, to.y) has been visited already
31 continue
32
33 //push "to" to the stack
34 stack[stack_size]’s x and y = to’s x and y
35 D[stack_size] = DIR_LEFT
36 V[to.x][to.y] = true
37 increment stack_size by 1
38 }
39
40 /* end DFS */
41 /* print out coordinates in row, column format to file */
42 }

Just like with recursion, the results will be stored in "stack" from 0 to "stack_size". Loop through and
print out the points to get the path from source S to sink T .

10

